RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. FOURTH SEMESTER EXAMINATION, MAY 2016

SECOND YEAR [BATCH 2014-17]

Date : 20/05/2016 Time : 11 am – 3 pm

ECONOMICS (Honours) Paper : IV

Full Marks : 100

[4×5]

[Use a separate Answer Book for each group]

Group - A

- 1. Answer **any four** questions :
 - a) "In a simple linear regression model estimated using OLS, the covariance between the estimated errors & the regressor is zero by construction." Justify your agreement or disagreement with this statement both in case of simple linear regression model with intercept and without intercept.
 - b) Consider the estimated regressions $Y_i^* = \hat{\beta}_1^* + \hat{\beta}_2^* X_i^* + \hat{u}_i^*$, and $Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i$, where $Y_i^* = w_1 Y_i \& X_i^* = w_2 X_i$; w_1, w_2 are constants. Find the relation between the variances of $\hat{\beta}_2^* \& \hat{\beta}_2$.
 - c) Prove that total variation of the dependent variable in a linear regression model can be split up into two parts : Explained variation (ESS) & Unexplained or residual variation (RSS).
 - d) Consider the following regression through origin model : $Y_i = \beta x_i + u_i$, i = 1, 2.

You are told that $u_1 \sim N(0, \sigma^2) \& u_2 \sim N(0, 2\sigma^2)$ and they are statistically independent. If $X_1 = 1$ & $X_2 = -1$, obtain the weighted least square (WLS) estimate of β and its variance. Is this variance better than the variance of the OLS estimator had you incorrectly assumed that both $u_1 \& u_2 \sim N(0, \sigma^2)$.

- e) Consider the least squares regression of Y on a single variable X. Show that the coefficient of determination R^2 is equal to the squared correlation coefficient between Y & X only if there is an intercept in the equation.
- f) A researcher estimates the following two models using OLS.

Model A: $y_i = \beta_0 + \beta_1 S_i + \beta_2 A_i + \epsilon_i$

Model B : $y_i = \beta_0 + \beta_1 S_i + \epsilon_i$

where y_i refers to the marks (out of 100) that a student i gets in an examination, S_i refers to the number of hours spent studying for the examination by the student and A_i is an index of innate ability (varying continuously from a low ability score of 1 to a high ability score of 10). \in_i is the usual classical error. The estimated β_1 coefficient is 7.1 for model A, but 2.1 for model B; both are statistically significant. The estimated β_2 coefficient is 1.9 and is also significantly different from zero. Does this suggest that students with lower ability spend more time studying?

- g) The estimated regression of y on x is $\hat{y} = 0.399x + 6.9$ and the estimated regression of x on y is $\hat{x} = 1.212y 2.4$. What percentage of variation in y, on an average, is explained by x?
- 2. Answer **any two** questions :
 - a) Consider a two variable linear model Y = α + βx + u, where α, β are two parameters and u is the disturbance term. Calculate OLS estimators of α&β & show that the OLS estimator of β is BLUE. State the reasons for the inclusion of the disturbance term u in the model. [12+3]
 - b) A production function is specified as $y_i = \alpha + \beta_1 x_{1i} + \beta_2 x_{2i} + u_i$; where u_i are iid $N(0, \sigma^2)$, y = output, $x_1 = labour input$ & $x_2 = capital input$; i = 1, 2, ..., 23. The independent variables are non-

[2×15]

[3+2]

	st	behastic. The following information are given : $\overline{x}_1 = 10$, $\overline{x}_2 = 5$, $\overline{y} = 12$, $\sum_{i} x_{1i}^2 = 2312$,	
	\sum_{i}	$\sum_{i} x_{2i}^{2} = 587, \sum_{i} y_{i}^{2} = 3322, \sum_{i} x_{1i} x_{2i} = 1158, \sum_{i} x_{1i} y_{i} = 2770 \& \sum_{i} x_{2i} y_{i} = 1388.$	
	i)	Find the 95% confidence intervals for α , β_1 & β_2 and test the hypothesis $\beta_1 = 1$.	[10]
	ii)	Find 95% confidence interval for σ^2 .	[5]
	c) i)	Describe the steps involved in white test for detection of heteroscedasticity.	[7]
	11)	Explain the method of weighted Least Square (WLS) for removing the presence of heteroscedasticity in a regression model	[5]
	iii) State the consequences of heteroscedasticity.	[3]
	d) i)	Given a simple of 50 observations & 4 explanatory variables, what can you say about auto correlation if computed D-W 'd' values are—	
	•••	A) 1.05, B) 2.5 and C) 3.97?	[4]
	11)	Consider the following estimated demand for money function for India for the period 1978 – 1995. $\log(M_t) = 1.6 - 0.10 \log(R_t) + 0.68 \log(Y_t) + 0.52 \log(M_{t-1})$. $R^2 = 0.92$, $d = 1.86$,	
		Where M_t = Real Cash balance, R_t = long-term rate of interest & Y_t = aggregate real national in come.	
	iii	State the reason why for this regression equation, the d-statistic is inappropriate.) Assume that the disturbance term in a regression model is auto-correlated (through first-	[3]
		order autoregressive scheme) but the value of auto-correlation coefficient (ρ) is unknown.	
		Explain the steps involved in remedying the auto-correlation problem in such a situation.	[8]
		<u>Group - B</u>	
3.	Ansv	ver any four questions :	[4×3]
	a) D	istinguish between Fixed rent contract and Share cropping contract.	
	b) M	ention two examples of Government failure.	
	c) W	hat do you mean by asymmetric information?	
	e) D	efine Rent Seeking.	
	f) D	efine Nairobi Puzzle.	
	g) M	ention three conditions of corruption.	
	h) D	istinguish between Piece rate wage & Time rate wage.	
4.	Ansv	ver <u>any one</u> question :	[1×8]
	a) D b) G er	iscuss in detail the efficiency criterion in different types of land rented contract. raphically explain equilibrium situation in rural labour market — equilibrium with full nployment & equilibrium with unemployment.	
5.	Ansv	ver <u>any two</u> questions : [2×15]
	a) W ac	That are the major assumptions of Lewis model. Discuss how economic development is hieved through migration in this model. Mention the major criticisms of this model. [3]	+7+5]
	b) D su	efine the concept of 'Surplus labour'. Discuss the implications of $MP_L = 0$ for the existence of rplus labour in the Sen's model.	
	D	iscuss the various causes of market failure. [3	+7+5]
	c) D fr	iscuss the Harris-Todaro Model with diagram. Discuss the various policy options emanating om this model.	[8+7]
	d) D gr	iscuss in detail the problems of rural credit market. State the Lender's risk hypothesis. Explain aphically the monopolistic structure of rural credit market. [5	+3+7]

1 0.000 0.000 2 0.012 0.020 3. 0.072 0.115 0.072 0.115 0.297 0.207 0.297 0.297 0.207 0.297 0.297 0.412 0.554 0.412 0.989 1.239 1.239 1 1.735 2.088 0 2.156 2.558 0 2.156 2.558 1 2.603 3.053 3.074 3.571 3.571 3.565 4.107 4 4.075 4.660 5 4.601 5.229	0-001 0-051 0-216 0-484 0-831 1-237 1-237 1-690 2-180 2-180 2-180 3-816 4-404					
2 0-010 0-020 3 0-072 0-115 6 0-412 0-297 7 0-412 0-554 6 0-676 0-872 7 0-989 1-239 9 1-344 1-646 1 2-156 2-558 1 2-156 2-558 1 2-603 3-053 3 3-555 4-107 4 4-075 4-660 5 4-601 5-229	0-051 0-216 0-484 0-831 0-831 1-237 1-690 2-180 2-180 2-180 3-816 3-816 4-404	0.004	3.841	5-024	6.635	7-879
3. 0.072 0.115 5, 0.207 0.297 6 0.412 0.554 7 0.412 0.554 6 0.676 0.872 7 0.989 1.239 8 1.344 1.646 9 1.735 2.588 1 2.603 3.053 3 3.054 3.558 1 2.603 3.053 3 3.555 4.107 4 4.075 4.660 5 4.601 5.229	0-216 0-484 0-484 0-831 1-237 1-690 2-180 2-180 2-180 3-247 3-816 4-404	0.103	5-991	7-378	9.210	10-597
4 0.207 0.297 5 0.412 0.554 6 0.676 0.872 7 0.989 1.344 9 1.344 1.646 9 1.735 2.988 1.735 2.988 3.053 2 3.074 3.558 3 3.565 4.107 4 4.075 4.601 5 4.601 5.229	0-484 0-831 1-237 1-690 2-180 2-700 3-247 3-816 4-404	0.352	7-815.	9.348	11.345	12-838
5, 0.412 0.554 7 0.412 0.554 7 0.989 1.239 8 1.344 1.646 9 1.735 2.088 0 2.156 2.558 1 2.603 3.053 3 3.555 4.107 3 3.555 4.107 4 4.075 4.601 5.229 6 5.142 5.812	0-831 1-237 1-690 2-180 2-700 3-247 3-816 4-404	0.711	9.488	11.143	13-277	14-860
6 0-676 0-872 7 0-989 1-239 9 1-344 1646 9 1-735 2-088 1 735 2-088 0 2-156 2-558 1 2-603 3-053 3 3-074 3-571 3 3-555 4-107 4 4-075 4-660 5 4-601 5-229	1.237 1.690 2.180 2.180 2.700 3.247 3.816 4.404	1.145	11-070	12-832	15-086	16-750
7 0.989 1.239 8 1.344 1.646 9 1.735 2.088 1 735 2.088 1 735 2.088 1 2.156 2.558 2 2.156 2.558 3 3.053 3.053 3 3.565 4.107 4 4.075 4.660 5 4.601 5.229	1-690 2-180 2-700 3-247 3-816 4-404	1-635	12.592	14.449	16.812	18-548
8 1.344 1.646 9 1.735 2.088 0 2.156 2.558 1 2.603 3.053 2 3.074 3.571 3 3.555 4.107 4 4.075 4.660 5 4.601 5.229 6 5.142 5.812	2-180 2-700 3-247 3-816 4-404	7.167	14-067	16-013	18.475	20.278
9 1.735 2.088 0 2.156 2.558 1 2.603 3.053 2 3.074 3.571 3 3.555 4.107 4 4.075 4.601 5 4.601 5.229 6 5.142 5.812	2:700 3:247 3:816 4:404	2.733	15-507	17-535	20-090	21-95
0 2:156 2:558 2 3:074 3:571 3 3:565 4:107 4 4:075 4:660 5 4:601 5:229 6 5:142 5:812	3-247 3-816 4-404	3.325	16.919	19-023	21-666	23-589
1 2.603 3.053 2 3.074 3.571 3 3.555 4.107 3 4.075 4.660 5 4.601 5.229 6 5.142 5.812	3-816 4-404	3.940	18.307	20-483	23-209	25-188
3 3.074 3.571 3 3.565 4.107 4 4.075 4.660 5 4.601 5.229 6 5.142 5.812	4-404	4.575	19-675	21-920	24:725	26.75
3 3.565 4.107 4 4.075 4.660 5 4.601 5.229 6 5.142 5.812		5.226	21-026	23-337	26-217	28-30
4 4.075 4.660 5 4.601 5.229 6 5.142 5.812	5-009	5.892	22.362	24.736	27.688	29-81
5 4.601 5.229 6 5.142 5.812	5.629	6.571	23.685	26-119	29-141	31.31
6 5.142 5.812	6.262	7-261	24-996	27-488	30-578	32.80
7100 7110 0	6-908	296.2	26.296	28.845	32.000	34.26
2011 6.402	1.564	617.8	782.76	30-191	33.409	35.71
8 6.765 7.015	150.9	062.0	28.869	31-526	34.805	37.15
0 6.844 7.633	206-8	10-117	30.144	32.852	36.191	38.58
00 7-434 8-260	9-591	10-851	31-410	34.170	37-566	39-99
8-034 8-897	10-283	11-591	32-671	35.479	38-932	41.40
22 8.643 9.542	10-982	12-338	33-924	36-781	40.289	42.79
9.260 10.196	11.688	13-091	35.172	38-076	41.638	44·18
04 9.886 10.856	12.401	13-848	36-415	39-364	42-980	45.55
25 10-520 11-524	13.120	14-611	37-652	40-646	44.314	46-92
04 11-160 12-198	13-844	15.379	38.885	41-923	45.642	48.29
7 11.808 12.879	14-573	16.151	40-113	43.194	46-963	49.64
28 12:461 13:565	15-308	16-928	41-337	44.461	48.278	50-99
29 13-121 14-256	16-047	17-708	42-557	45.722	49.588	52.33
30 13-787 14-953	16.791	18-493	43.773	46-979	50-892	53-67
40 20-706 22-164	24.433	26.509	55-759	59-342	63-691	96-76
TOT-00 100-TC 02	72.357	34.764	67-505	71-420	76-154	79-49
60 35-535 37-485	40.482	43.188	79-082	83·298	88-379	91-95
70 43.275 45.442	48.758	51-739	90-531	95-023	100-425	104-21
80 51-172 53-540	57-153	60-391	101-879	106-629	112-329	116-32
90 59.196 61.754	65-647	69-126	113-145	118-136	124-116	128-29
00 67-328 70-065	74.222	77-929	124.342	129-561	135-807	140-16

	n a	0.0500	0-025	10-0	0-005
	200 I No	6-314	12.706	31-821	63-657
	2	2.920	4.303	6-965	9-925
	3	2.353 -	3.182	4.541	5-841
	4	2.132	2:776	3.747	4.604
	5	2.015	2:571	3.365	4-032
	9	1-943	2:447	3.143	3.707
	000007 20	1-895	2.365	2.998	3.499
	8	1-860	2.306	2.896	3.355
	0.000	1.833	2.262	2.821	3-250
	• • 10	1.812	2.228	2.764	3.169
	1 Horses	1.796	2.201	2.718	3.106
	12	1-782	2.179	2.681	3-055
	13	1.771	2.160	2.650	3-012
	14	1.761	2.145	2.624	2-977
Trank.	0.00 15	1-753	2.131	2.602	2.947
	16	1.746	2.120	2.583	2.921
	101-017 SO	1.740	2.110	2.567	2.898
	0000118 00	1.734	2.101	2.552	2.878
	rea e 19 au	1.729	2.093	2.539	2.861
100	20	1-725	2-086	2.528	2.845
4	880-121 05	1.721	2.080	2.518	2.831 0050
4	22	1.7.17	2-074	2.508	2.819
ł	23	1-714	2.069	2.500	2.807
	540 224 8S	Q-141-7178-8	2-064	2.492	2:797 001 1
40	25	1.708	2-060	2.485	2.787
22	26	1.706	2.056	2.479	9.779
125	208.027	0.1.703	2.052	2:473	2:771
	28	1.701	2.048	2.467	2.763
	29	1-699	2-045	2.462	2.756
	30	1-697	2.042	2.457	2-750
	40	1-684	2-021	2.423	2:704
	60	1-671	2.000	2.390	2.660
	120	1-658	1-980	2.358	2.617
	8	1-645	1-960	2.326	2.576

K = 1		<i>k</i> ' = 2		<i>k</i> ' = 3		<i>k</i> = 4		k = 5		<i>k</i> = 6		k = 7		<i>k</i> ′ = 8		K = 9		<i>k</i> ' = 10		
	dL	du	dL	du	dL	du	dL	du	dı	du	dL	du	dı	du	dL	du	dL	du	dL	d
6	0.610	1.400	-	-	1th	1 - - (10-	-	_	-		-	-	-	-			-	-	-
7	0.700	1.356	0.467	1.896	-	-	-	-	-	/-	-	37	-		1	-	-	-	-	-
8	0.763	1.332	0.559	1.600	0.308	2.28/	0 206	2 588	1			1	STE H	Han		-	10 prover	1	-	-
10	0.879	1.320	0.697	1.641	0.525	2.016	0.376	2.414	0.243	2.822		_	2	-	_	_	1	1	_	-
11	0.927	1.324	0.658	1.604	0.595	1.928	0.444	2.283	0.316	2.645	0.203	3.005	12	-	-	-	-	-	-	-
12	0.971	1.331	0.812	1.579	0.658	1.864	0.512	2.177	0.379	2.506	0.268	2.832	0.171	3.149	The second second	72-	-	-	-	-
13	1.010	1.340	0.861	1.562	0.715	1.816	0.574	2.094	0.445	2.390	0.328	2.692	0.230	2.985	0.147	3.266		-	-	-
14	1.045	1.350	0.905	1.551	0.767	1.779	0.632	2.030	0.505	2.296	0.389	2.572	0.286	2.848	0.200	3.111	0.127	3.360		-
15	1.077	1.361	0.946	1.543	0.814	1.750	0.685	1.977	0.562	2.220	0.447	2.472	0.343	2.727	0.251	2.979	0.175	3.216	0.111	3.4
10	1,100	1.3/1	1.015	1.539	0.897	1.728	0.734	1.935	0.664	2.15/	0.502	2 318	0.451	2 537	0.304	2.000	0.222	2.975	0.198	3.1
8	1.158	1.391	1.046	1.535	0.933	1.696	0.820	1.872	0.710	2.060	0.603	2.257	0.502	2.461	0.407	2.667	0.321	2.873	0.244	3.0
9	1.180	1.401	1.074	1.536	0.967	1.685	0.859	1.848	0.752	2.023	0.649	2.206	0.549	2.396	0.456	2.589	0.369	2.783	0.290	2.5
20	1.201	1.411	1.100	1.537	0.998	1.676	0.894	1.828	0.792	1.991	0.692	2.162	0.595	2.339	0.502	2.521	0.416	2.704	0.336	2.1
21	1.221	1.420	1.125	1.538	1.026	1.669	0.927	1.812	0.829	1.964	0.732	2.124	0.637	2.290	0.547	2.460	0.461	2.633	0.380	2.1
2	1.239	1.429	1.147	1.541	1.053	1.664	0.958	1.797	0.863	1.940	0.769	2.090	0.677	2.246	0.588	2.407	0.504	2.571	0.424	2.
3	1.257	1.437	1.168	1.543	1.078	1.660	0.986	1.785	0.895	1.920	0.804	2.061	0.715	2.208	0.628	2.360	0.545	2.514	0.465	20
-	1 288	1.440	1.188	1.540	1.101	1.030	1.013	1 767	0.925	1.902	0.857	2.035	0.751	514	0.000	2.316	0.621	2.404	0.544	2
6	1.302	1.461	1.224	1.553	1.143	1.652	1.062	1.759	0.979	1.873	0.897	1.992	0.816	2.117	0.735	2.246	0.657	2.379	0.581	2
7	1.316	1.469	1.240	1.556	1.162	1.651	1.084	1.753	1.004	1.861	0.925	1.974	0.845	2.093	0.767	2.216	0.691	2.342	0.616	2.
8	1.328	1.476	1.255	1.560	1.181	1.650	1.104	1.747	1.028	1.850	0.951	1.958	0.874	2.071	0.798	2.188	0.723	2.309	0.650	- 2.
9	1.341	1.483	1.270	1.563	1.198	1.650	1.124	1.743	1.050	1.841	0.975	1.944	0.900	2,052	0.826	2.164	0.753	2.278	0.682	2.
0	1.352	1.489	1.284	1.567	1.214	1.650	1.143	1.739	1.071	1.833	0.998	1.931	0.926	2.034	0.854	2.141	0.782	2.251	0.712	2.
1	1.363	1.496	1.297	1.570	1.229	1.650	1.160	1.735	1.090	1.825	1.020	1.920	0.950	2.018	0.879	2.120	0.810	2.226	0.741	2.
2	1.3/3	1.502	1.309	1.5/4	1.244	1.650	1.1//	1.732	1,109	1.819	1.041	1.909	0.972	1 001	0.904	2.102	0.830	2.203	0.705	2.
4	1.303	1.500	1 333	1 580	1 271	1.657	1 208	1 728	1 144	1 808	1.080	1 891	1.015	1.970	0.950	2.069	0.885	2.162	0.821	2
5	1.402	1.519	1.343	1.584	1.283	1.653	1.222	1.726	1.160	1.803	1.097	1.884	1.034	1.967	0.971	2.054	0.908	2.144	0.845	2.
16	1.411	1.525	1.354	1.587	1.295	1.654	1.236	1.724	1.175	1.799	1.114	1.877	1.053	1.957	0.991	2.041	0.930	2.127	0.868	2.
7	1.419	1.530	1.364	1.590	1.307	1.655	1.249	1.723	1.190	1.795	1.131	1.870	1.071	1.948	1.011	2.029	0.951	2.112	0.891	2.
8	1.427	1.535	1.373	1.594	1.318	1.656	1.261	1.722	1.204	1.792	1.146	1.864	1.088	1.939	1.029	2.017	0.970	2.098	0.912	2.1
9	1.435	1.540	1.382	1.597	1.328	1.658	1.273	1.722	1.218	1.789	1.161	1.859	1.104	1.932	1.047	2.007	0.990	2.085	0.932	2.
0	1.442	1.544	1.391	1.600	1.338	1.659	1.285	1.721	1.230	1.780	1.329	1,854	1.120	1.924	1.004	1.997	1.008	2.072	1.039	-21
0	1 503	1.585	.1 462	1.628	1 421	1.674	1 378	1 721	1.335	1.771	1.291	1.822	1.246	1.875	1.201	1.930	1.156	1.986	1.110	2.
5	1.528	1.601	1.490	1.641	1.452	1.681	1.414	1.724	1.374	1.768	1.334	1.814	1.294	1.861	1.253	1.909	1.212	1.959	1.170	2.
0	1.549	1.616	1.514	1.652	1.480	1.689	1.444	1.727	1.408	1.767	1.372	1.808	1.335	1,850	1.298	1.894	1.260	1.939	1.222	1.
5	1.567	1.629	1.536	1.662	1.503	1.696	1.471	1.731	1.438	1.767	1.404	1.805	1.370	1.843	1.336	1.882	1.301	1.923	1.266	1.9
0	1.583	1.641	1.554	1.672	1.525	1.703	1.494	1.735	1.464	1.768	1.433	1.802	1.401	1.837	1.369	1.873	1.337	1.910	1.305	1.
5	1.598	1.652	1.571	1,680	1.543	1.709	1.515	1.739	1.487	1.770	1.458	1.801	1.428	1.834	1.399	1.867	1.369	1.901	1.339	51.
15	1.674	1.062	1.586	1.688	1.560	1 721	1.534	1.743	1.507	1.772	1,480	1.801	1.453	1.831	1.425	1.801	1.397	1.893	1.309	1.
0	1.635	1.679	1.612	1,703	1.589	1.726	1.566	1.751	1.542	1.776	1.518	1.801	1.494	1.827	1.469	1.854	1.445	1.881	1,420	1.9
5	1.645	1.687	1.623	1.709	1.602	1.732	1.579	1.755	1.557	1.778	1.535	1.802	1.512	1.827	1.489	1.852	1.465	1.877	1.442	1.9
00	1.654	1.694	1.634	1.715	1.613	1.736	1.592	1.758	1.571	1.780	1.550	1.803	1.528	1.826	1.506	1.850	1.484	1.874	1:462	1.
50	1.720	1.746	1.706	1.760	1.693	1.774	1.679	1.788	1.665	1.802	1.651	1.817	1.637	1.832	1.622	1.847	1.608	1.862	1.594	1.8
0	1.758	1.778	1.748	1.789	1.738	1.799	1.728	1.810	1.718	1.820	1.707	1,831	1.697	1,841	1.686	1.852	1.675	1.863	1.665	1.8
		and a	14416	100		Le alti		315	al de	1	ation .	48.14		1 13 1 . 104 1991 - 104	10000 - 14 80	14.			C 120	320
210	A	1.	+0	001	10	610,2 66213	n.	112	C.UV	M	2.2	10	rya	ha	ns	14. 5 h	11.00		224	11
	Man I	40		TA I	1	SSL a	11	20	er	3	200	NO EV	13 (24	043-81	12278	CA	89.33		54.5	0.6
-	FOR	1	100	ier:	1.1	1320	St	0	D.ECI	1	0 80L	en	0.	ALC	5-	ir	64	ich	1.5	10
		al and	tain.	-	K	1	n	umb	er	0	- 6	XP	a	nul	viy	V	~~~		w	
		1.0	of Long		- + water	Serie T a	0	aut t		0.	and and	and and		-	32.01	sinch	-	from the	bushing	

Х·